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Abstract. Recent optical kerr effect (OKE) studies have revealed that orientational relaxation of rod-
like nematogens near the isotropic-nematic (I–N) phase boundary and also in the nematic phase exhibit 
temporal power law decay at intermediate times. Such behaviour has drawn an intriguing analogy with 
supercooled liquids. Here, we have investigated the single-particle and collective orientational dynamics 
of a family of model system of thermotropic liquid crystals using extensive computer simulations. Sev-
eral remarkable features of glassy dynamics are on display including non-exponential relaxation, dy-
namical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. 
Over a temperature range near the I–N phase boundary, the system behaves like a fragile glass-forming 
liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and 
explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. 
The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar 
to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures 
shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a tem-
perature that marks the onset of the growth of the depth of the potential energy minima explored by the 
system. 
 
Keywords. Liquid crystals; supercooled liquid; power law relaxation; fragility; heterogeneous dyna-
mics; energy landscape. 

1. Introduction 

Thermotropic liquid crystals exhibit exotic phase 
behaviour upon temperature variation. In the isotropic 
phase, a liquid does not exhibit any long range trans-
lational or orientational order. The nematic phase is 
endowed with a long-ranged orientational order but 
lacks translational order. Further cooling leads to a more 
ordered smectic phase where two-dimensional trans-
lational order along with long-ranged orientational 
order sets in the system. The isotropic–nematic (I–N) 
phase transition, which is believed to be weakly first 
order in nature with certain characteristics of the 
continuous transition, has been a subject of immense 
attention in condensed matter physics and material 
sciences.1,2 In contrast, the dynamics of thermotropic 
liquid crystals have been much less studied, the focus 
being mostly on the long-time behaviour of orienta-
tional relaxation near the I–N transition.1 A series of 
OKE measurements have, however, recently studied 

collective orientational relaxation in the isotropic phase 
near the I–N transition over a wide range of time 
scales.3,4 The dynamics have been found to be sur-
prisingly rich, the most intriguing feature being the 
power law decay of the OKE signal at short-to-
intermediate times.3,4 The relaxation scenario appears 
to be strikingly similar to that of supercooled molecular 
liquids5, even though the latter do not undergo any 
thermodynamic phase transition. 
 To this end, we have undertaken molecular dy-
namics simulations of a family of model systems 
consisting of rod-like molecules across the I–N tran-
sition. Given the involvement of the phase transition to 
an orientationally ordered mesophase upon lowering 
the temperature, we choose to probe the single-particle 
and collective orientational dynamics in order to make 
comparison with relaxation behaviour observed for 
supercooled liquids. We have calculated the non-
Gaussian parameter in the orientational degrees of 
freedom in order to probe the heterogeneous dynamics 
present in the system near I–N transition. We have 
defined a fragility index to quantitatively measure 
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the glassy dynamics observed in the orientational 
degrees of freedom. We have also explored plausible 
correlation of the features of the underlying energy 
landscape with the observed non-Arrhenius dynamics 
in analogy with supercooled liquids. 

2. Models and simulation details 

The systems we have studied consist of ellipsoids of 
revolution. The Gay–Berne (GB) pair potential,6 that 
is well established to serve as a model potential for 
systems of thermotropic liquid crystals, has been 
employed. The GB pair potential, which uses a single-
site representation for each ellipsoid of revolution, is 
an elegant generalization of the extensively used iso-
tropic Lennard–Jones potential to incorporate anisot-
ropy in both the attractive and the repulsive parts of 
the interaction.6,7 In the GB pair potential, ith ellipsoid 
of revolution is represented by the position ri of its 
center of mass and a unit vector ei along the long axis 
of the ellipsoid. The interaction potential between 
two ellipsoids of revolution i and j is given by 
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Here σss defines the thickness or equivalently, the 
separation between the two ellipsoids of revolution 
in a side-by-side configuration, rij is the distance bet-
ween the centers of mass of the ellipsoids of revolu-
tion i and j, and ˆ /ij ij ijr r r=  is a unit vector along the 
intermolecular separation vector rij. The molecular 
shape parameter σ and the energy parameter ε both 
depend on the unit vectors ei and ej as well as on îjr  
as given by the following set of equations: 
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with χ = (κ2 + 1)/(κ2 – 1) and 
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where the exponents ν and μ are the adjustable para-
meter, and 
 
 2 2 1/ 2

1( , ) [1 ( ) ] ,i j i je e e eε χ −= − ⋅  (5) 
 
and 
 
 2 ˆ( , , )ij i jr e eε =  

  
2 2ˆ ˆ ˆ ˆ( ) ( )

1
2 1 ( ) 1 ( )

i ij j ij i ij j ij

i j i j

e r e r e r e r
e e e e

χ
χ χ

⎡ ⎤⋅ + ⋅ ⋅ − ⋅′
− +⎢ ⎥

′ ′+ ⋅ − ⋅⎢ ⎥⎣ ⎦
 (6) 

 
with χ′ = (κ′1/μ − 1)/(κ′1/μ + 1). Here κ = σee/σss is the 
aspect ratio of the ellipsoid of revolution with σee 
denoting the separation between two ellipsoids of revo-
lution in a end-to-end configuration, and σss = σ0, 
and κ′ = εss/εee, where εss is the depth of the mini-
mum of the potential for a pair of ellipsoids of revo-
lution aligned in a side-by-side configuration, and 
εee is the corresponding depth for the end-to-end 
alignment. Here ε0 is the depth of the minimum of 
the pair potential between two ellipsoids of revolu-
tion aligned in cross configuration. The GB pair po-
tential defines a family of models, each member of 
which is characterized by the values chosen for the 
set of four parameters κ, κ′, μ, and ν, and is repre-
sented by GB (κ, κ′, μ, ν)7. Systems consist of 500 
ellipsoids of revolution in a cubic box with periodic 
boundary conditions at several temperatures, starting 
from the high-temperature isotropic phase down to the 
nematic phase across the I–N phase boundary have 
been simulated. We have carried out several simula-
tions with different aspect ratios (κ) where for each 
aspect ratio isochors of different densities have been 
investigated. All quantities are given in reduced 
units defined in terms of the Gay–Berne potential 
parameters ε0 and σ0: length in units of σ0, tempera-
ture in units of ε0/kB, and time in units of (σ2

0m/ε0)1/2, 
m being the mass of the ellipsoids of revolution. The 
mass as well as the moment of inertia of each of the 
ellipsoids of revolution have been set equal to unity. 
The intermolecular potential is truncated at a distance 
rcut and shifted such that U (rij = rcut) = 0, rij being 
the separation between two ellipsoids of revolution i 
and j. The equations of motion have been integrated 
using the velocity–verlet algorithm with integration 
time step dt = 0⋅0015.8 Equilibration has been done 
by periodic re-scaling of linear and angular velocities 
of particles. This has been done for a time period of 
tq following which the system has been allowed to 
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propagate with a constant energy for a time period 
of te in order to ensure equilibration upon observa-
tion of no drift of temperature, pressure, and potential 
energy. The data collection has been executed in a 
microcanonical ensemble. At each state point, local 
potential energy minimization has been executed by 
the conjugate gradient technique for a subset of 200 
statistically independent configurations. The landscape 
analysis has been done with a system size of 256 ellip-
soids of revolution, which is big enough for having 
no qualitative change in the results due to the system 
size.9 Minimization has been performed with three 
position coordinates and two Euler angles for each 
particle, the third Euler angle being redundant for ellip-
soids of revolution. 

3. Results and discussion 

3.1 Single particle orientational dynamics 

The orientational dynamics of the system at the single 
particle level may be described by the first and sec-
ond order single particle orientational time correla-
tion functions (OTCF) Cs

l(t) (l = 1, 2), which are 
defined by 
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where Pl is the l-th rank Legendre polynomial and 
the angular brackets stand for ensemble averaging. 
Figure 1a shows the single particle second rank 
OTCF in a log–log plot as the temperature is lowered 
from high temperature isotropic phase to low tem-
perature nematic phase across the I–N transition. 
The I–N transition is marked by a jump in the 
orientational order parameter S, defined for an N-
particle system as the largest eigenvalue of the 
ordering matrix Q: 
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where eiα is the α-component (in the space-fixed 
frame) of the unit orientation vector ei along the 
principal symmetry axis of the ith ellipsoid of revo-
lution.10 Note the emergence of the power law decay at 
short to intermediate times near the I–N phase 
boundary. As the I–N phase boundary is crossed 
upon cooling, the advent of two power law decay 
regimes separated by an intervening plateau at short-
to-intermediate times imparts a step-like feature to 
the temporal behaviour of the second rank OTCF. 
Such power law relaxation near I–N phase boundary 
was an area of great interest in the recent past11–16 
and it has been investigated that the scenario is not a 
unique property of the model we have studied; it is a 
rather universal phenomenon of second rank OTCF.17 

 
 

 
 

Figure 1. The time evolution of the (a) single particle OTCF on a log–log plot for GB (3, 5, 2, 1) along an 
isochor with density ρ = 0⋅32 across I–N transition at temperatures T = 2⋅008, 1⋅697, 1⋅499, 1⋅396, 1⋅310, 
1⋅199 and 1⋅102 from left to right and (b) collective second rank OTCF for the same system and isochor at 
temperatures T = 2⋅008, 1⋅499, 1⋅396, 1⋅310, 1⋅199 and 1⋅102 form top to bottom. TI–N is located between 
T = 1⋅499 and T = 1⋅396. The portions fitted with straight line correspond to power law decay regime. 
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Figure 2. (a) The orientational correlation time in the logarithmic scale as function of the inverse of the 
scaled temperature, the scaling being done by the isotropic to nematic transition temperature TI–N. For the 
insets, the horizontal and the vertical axis labels read same as that of the main frame and are thus omitted 
for clarity. Along each isochor, the solid line is the Arrhenius fit to the subset of the high-temperature data 
and the dotted line corresponds to the fit to the data near the isotropic-nematic phase boundary with the 
VFT form. (b) The fragility index m shown as a function of density for different aspect ratios. The dashed 
lines are guide to the eye to illustrate the fact that the dependence of the fragility index on the density is be-
coming stronger as the aspect ratio becomes smaller. 

 
 
Such a feature bears remarkable similarity to what is 
observed for supercooled liquids as the glass transi-
tion is approached from the above.18,19 While for the 
supercooled liquid the emergence of step-like feature 
is well understood as a consequence of β relaxation, 
the origin of such a feature observed for liquid crystal 
defied of reliable explanation. 

3.2 Collective orientational dynamics 

In experiments, one can probe orientational relaxa-
tion through the decay of the OKE signal, which is 
given by the negative of the time derivative of the 
collective second rank OTCF Cc

2(t).4,20,21 The latter, 
which is defined by 
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Calculation of this correlation function is computa-
tionally demanding, particularly at longer times. In 
order to set a direct link with experimental results, 
we show the temporal behaviour of the OKE signal in 
the log–log plot for the system across the I–N phase 
transition in figure 1b. The short-to-intermediate-time 
power law regime is evident in the OKE signal for 

the system studied here. Like single particle second 
rank OTCF, it is also verified to be a universal pheno-
menon near I–N transition.17 

4. Fragility of liquid crystals 

We estimate the orientational correlation time τ as the 
time taken for CS

2(t) to decay by 90%, i.e. CS
2 (t = τ) = 

0⋅1. Figure 2a shows τ in the logarithmic scale as a 
function of the inverse temperature along the three 
isochors for each of the three systems considered. 
We have scaled the temperature by TI−N in the spirit 
of Angell’s plot, that displays the shear viscosity (or 
the structural relaxation time, the inverse diffusivity, 
etc.) of glass-forming liquids as a function of the in-
verse of the scaled temperature, the scaling being 
done in the latter case by the glass transition tempe-
rature Tg.22,23 For all the three systems, two distinct 
features are common: (i) in the isotropic phase far 
away from the I–N transition, the orientational cor-
relation time τ exhibits the Arrhenius temperature 
dependence, i.e. τ(T) = τ0exp(E/kBT), where the acti-
vation energy E and the pre-factor τ0 are both inde-
pendent of temperature; (ii) in the isotropic phase 
near the I–N transition, the temperature dependence 
of τ shows marked deviation from the Arrhenius be-
haviour and can be well described by the Vogel–
Fulcher–Tammann (VFT) equation τ(T) = τ0exp[B/ 
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(T – TVFT)], where τ0, B, and TVFT are constants, in-
dependent of temperature. Again these features bear 
remarkable similarity with those observed for fragile 
glass-forming liquid. A non-Arrhenius temperature 
behaviour is taken to be the signature of fragile liquids. 
For fragile liquids, the temperature dependence of 
the shear viscosity follows the Arrhenius behaviour far 
above Tg and can be fitted to the VFT functional 
form in the deeply supercooled regime near Tg.22,23 
The striking resemblance in the dynamical beha-
viour described above between the isotropic phase 
of thermotropic liquid crystals near the I–N transi-
tion and supercooled liquids near the glass transition 
has prompted us to attempt a quantitative measure of 
glassy behaviour near the I–N transition. For super-
cooled liquids, one quantifies the dynamics by a pa-
rameter called fragility index which measures the 
rapidity at which the liquid’s properties (such as 
viscosity) change as the glassy state is approached. 
In the same spirit24 that offers a quantitative estima-
tion of the fragile behaviour of supercooled liquids, we 
here define the fragility index m of a thermotropic 
liquid crystalline system as16 
 

 
I N
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It is clear from the above equation that if τ(T) follows 
Arrhenius temperature dependence, m will be con-
stant throughout the whole temperature range. Fig-
ure 2b shows the density dependence of the fragility 
index for the three systems with different aspect ratios. 
For a given aspect ratio, the fragility index increases 
with increasing density, the numerical values of the 
fragility index m being comparable to those of super-
cooled liquids. The density dependence observed in 
the present work is remarkably similar to those observed 
for supercooled liquids. For the range of aspect ratios 
studied here, the dependence of the fragility index 
on the density is becoming stronger as the aspect ratio 
becomes smaller. 

5. Heterogeneous dynamics 

Another hallmark of fragile glass-forming liquids is 
spatially heterogeneous dynamics25 reflected in non-
Gaussian dynamical behaviour.26 It is intuitive that 
the growth of the pseudo-nematic domains, charac-
terized by local nematic order, in the isotropic phase 
near the I–N transition would result in heterogeneous 

dynamics in liquid crystals. We have, therefore, 
monitored the time evolution of the rotational non-
Gaussian parameter (NGP),27,28 αR

2(t), which in the 
present case is defined as 
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Here φii is the rotation vector like the position vector 
ri appears in the case of translational NGP of ith  
ellipsoid of revolution, the change of which is de-
fined by 
 

 
0
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ωi being the corresponding angular velocity,18,19 and 
N is the number of ellipsoids of revolution in the sys-
tem. NGP will have value equal to zero when system 
dynamics is spatially homogeneous and will have a 
non-zero value when the system dynamics is spa-
tially heterogeneous. As a typical behaviour, figure 
3a and b show the time dependence of the rotational 
NGP for one of the systems at several temperatures 
across the I–N transition along an isochor. On ap-
proaching the I–N transition upon cooling, a bimodal 
feature starts appearing with the growth of a second 
peak, which eventually becomes the dominant one, 
at longer times.16,27 We further investigate the ap-
pearance of this bimodal feature in NGP plot. To this 
end we calculate mean square angular deviation 
(MSAD) of the system at different temperatures 
starting from high temperature isotropic phase to low 
temperature nematic phase. The appearance of the 
bimodal feature in the rotational NGP is accompa-
nied by a signature of a sub-diffusive regime in the 
temporal evolution of the MSAD, the time scale of 
the short-time peak and that of the onset of the sub-
diffusive regime being comparable, as shown in fig-
ure 3a.16,27 We note that the dominant peak appears 
on a time scale which is comparable to that of onset 
of the diffusive motion in orientational degrees of 
freedom (ODOF) as evident in figure 3a.16,27 Similar 
feature has been observed recently for supercooled 
water.28 We further find that the time scale at which
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Figure 3. Time evolution of the rotational non-Gaussian parameter αR
2(t) in a semi-log plot for the system 

with aspect ratio κ = 3. The time dependence is shown at several temperatures (T = 3⋅5, 3⋅25, 3⋅0, 2⋅75, 2⋅5, 
2⋅25, 2⋅0, 1⋅88, 1⋅82, 1⋅78 and 1⋅5) across the isotropic-nematic (I–N) transition along an isochor at density = 
0⋅33. (a) On a different scale along the vertical axis (appearing on the right), time evolution of the mean 
square angular deviation 〈Δφ2(t)〉 is shown in a log–log plot for three temperatures: the highest temperature 
studied in the isotropic phase (T = 1⋅5) and the other two temperatures (T = 3⋅0 and 2⋅75) that are closest to 
the I–N transition on either side along with the time evolution of αR

2(t), and (b) On a different scale along 
the vertical axis (appearing on the right), the time evolution of the single-particle second rank orientational 
time correlation function CS

2(t) is shown in a log–log plot for the two temperatures (T = 3⋅0 and 2⋅75) that 
are closest to the I–N transition on either side along with the time evolution of αR

2(t). The solid lines denote 
the curves for the high temperature isotropic phase and the dashed lines for the low temperature nematic 
phase. 

 
 
the long-time peak appears is also comparable to  
the time scale of onset of the plateau that is observed in 
the time evolution of CS

2(t), as shown in figure 
3b.16,27 

6. Energy landscape analysis 

In recent years, energy landscape analysis has gained 
considerable importance as a powerful approach to 
understand pathways of protein folding. At the same 
time, several studies have achieved significant suc-
cess in interpreting the anomalous dynamics ob-
served in many glass-forming liquids in terms of the 
features of the underlying energy landscapes.29–34 
Energy landscape analysis gives the potential energy, 
which devoid of any kind of thermal motions, of in-
herent structures of the parent liquid and hence pro-
vides a better understanding of the structure and 
dynamics of the parent liquid. Figure 4a displays the 
average inherent structure energy as the change in 
temperature drives the system across the mesophases 
along three different isochors. Figure 4b shows the 
concomitant evolution of the average orientational 
order parameter S both for the inherent structures 
and the corresponding pre-quenched ones. It is evident 
that the average inherent structure energy remains 

fairly insensitive to temperature in the isotropic 
phase before it starts undergoing a steady fall below 
a certain temperature that corresponds to the onset 
of the growth of the orientational order.9 As the ori-
entational order grows through the nematic phase, 
the system continues to explore deeper potential en-
ergy minima until a plateau is reached on arrival at 
the smectic phase.9 In the inset of figure 4a, the loca-
tion of the maximum of the mean square fluctuation 
in the inherent structure energy shows that the sys-
tem explores potential energy minima spanning over 
a broader energy range as it settles into the nematic 
phase. This suggests the critical role of fluctuation 
effects in the nematic phase. The average potential 
energy for a state point obtained from the molecular 
dynamics trajectory, however, decreases rather 
smoothly in all three phases with decrease in tem-
perature as illustrated in the inset of figure 4b. It is 
evident that the signature of the I–N transition is 
quite weak here in contrast to that of the nematic-
smectic transition. We have repeated the same analysis 
for a larger system size to check the effect of finite 
system size, but qualitatively ended up with same 
conclusions as the smaller one. Note that this has 
been observed for a glassy system,32 where the aver-
age IS energy also falls over a temperature range.30
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Figure 4. (a) The temperature dependence of the average inherent structure energy per particle eIS along 
three isochors at densities ρ = 0⋅31, 0⋅32, and 0⋅33 for κ = 3. The inset shows the root mean square fluctua-
tion in inherent structure energy σeIS, computed from a subset of 200 configurations for each state point, as 
a function of temperature T at the same three densities. (b) The evolution of the average order parameter S 
with temperature both for the inherent structures (filled) and the corresponding pre-quenched ones 
(empty). The inset shows the temperature dependence of the average potential energy Epot at a state point 
obtained from averaging over the molecular dynamics trajectory. For clarity, Epot is shown for the state 
points along only one isochor corresponding to the density ρ = 0⋅32. The state points considered in our 
simulations correspond to (i) the isotropic (I) phase for T ≥ 1⋅297 and the smectic-B (Sm-B) phase for 
T ≤ 0⋅595 along the isochor at ρ = 0⋅31; (ii) I for T ≥ 1⋅495 and Sm-B for T ≤ 0⋅706 at ρ = 0⋅32; (iii) I for 
T ≥ 2⋅089 and Sm-B for T ≤ 0⋅803 at ρ = 0⋅33. (c) The inverse temperature dependence of the single-
particle orientational relaxation times τS

l , l = 1 (filled) and l = 2 (empty), in the logarithmic scale. The 
straight lines are the Arrhenius fits for the subsets of data points, each set corresponding to a fixed density: 
ρ = 0⋅31 (circle), ρ = 0⋅32 (square), ρ = 0⋅33 (triangle up). 

 
 
Like supercooled liquid, we have also observed a 
Gaussian form of number density of IS with eIS.16 
 Figure 4c illustrates the correlation of the energy 
landscape behaviour with the dynamics the system 
exhibits. Here, we define relaxation times τS

l(T) as 
the time when CS

l(t) = e–1.9 The dramatic slow down of 
orientational dynamics with decreasing temperature 
near the I–N transition manifests in the temperature 
dependence of these relaxation times. Figure 4c shows 

that in the isotropic phase far from the I–N transition 
region τS

l(T) exhibits the Arrhenius behaviour, i.e.  
τS

l(T) = τ0,lexp[El/(kBT)], where the activation energy 
El and the infinite temperature relaxation time τ0,l 
are independent of temperature. We find that the 
breakdown of the Arrhenius behaviour occurs at a 
temperature that marks the onset of the growth of the 
depth of the potential energy minima explored by 
the system.9 Such correlations of different other pro-
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perties with the landscape have been investigated in 
several other studies for both supercooled liquids 
and thermotropic liquid crystals.35,36 

7. Conclusion 

Computer simulation studies of single particle and 
collective orientational dynamics of thermotropic 
liquid crystals near the isotropic–nematic (I–N) tran-
sition are presented and compared with the dynam-
ics of supercooled liquids near glass transition. The 
short-to-intermediate time scale power law decay in 
the orientational relaxation appeared to be the most 
intriguing feature. In analogy with the supercooled 
liquids, a fragility index of liquid crystals is intro-
duced to quantify the glassiness of orientational dyna-
mics near the I–N transition. Our investigation of 
spatially heterogeneous dynamics strengthens the 
analogy further. The striking resemblance in the cor-
respondence between the manner of the exploration 
of the potential energy landscape and the onset of 
the non-Arrhenius temperature dependence of the 
relaxation time might imply a unique underlying 
landscape mechanism for slow dynamics in soft 
condensed matter. The close analogies in the dyna-
mics as well as in the features of energy landscape 
explored here may suggest that there could be an 
avoided second order thermodynamic phase transi-
tion underlying both the I–N and the glass transition. 
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